´ëÇѾð¾îÇÐȸ ÀüÀÚÀú³Î

´ëÇѾð¾îÇÐȸ

30±Ç 4È£ (2022³â 12¿ù)

Neural Network Language Models as Psycholinguistic Subjects: Focusing on Reflexive Dependency

Wonil Chung & Myung-Kwan Park

Pages : 169-190

DOI : https://doi.org/10.24303/lakdoi.2022.30.4.169

PDFº¸±â

¸®½ºÆ®

Abstract

Chung, Wonil & Park, Myung-Kwan. (2022). Neural network language models as psycholinguistic subjects: Focusing on reflexive dependency. The Linguistic Association of Korea Journal, 30(4), 169-190. The purpose of this study is to investigate the reflexive-antecedent dependency resolution accompanying the wh-filler-gap dependency resolution in neural network language models (LMs) sentence processing, comparing the processing result of LMs to the one of humans. To do so, we adopt the psycholinguistic methodology that Fraizer et al. (2015) used for humans. The neural-network language models employed in this study are four LMs: the Long Short-Term Memory (LSTM) trained on large datasets, the Generative Pre-trained Transformer-2 (GPT-2) trained on large datasets, an LSTM trained on small datasets (L2 datasets), and the GPT-2 trained on small datasets (L2 datasets). We found that only the LMs trained on large datasets were sensitive to the dependency between a reflexive and its antecedent matching in gender, but all of the four neural LMs failed to learn reflexive-antecedent dependency accompanying wh-filler-gap dependency. Furthermore, we also found that the neural LMs have a learning bias in gender mismatch.

Keywords

# reflexive dependency # filler-gap dependency # gender mismatch effect # neural network language model # surprisal

References

  • Aurnhammer, C., & Frank, S. (2019). Evaluating information-theoretic measures of word prediction in naturalistic sentence reading. Neuropsychologia, 134, 107-198.
  • Bock, K., & Miller, C. A. (1991). Broken agreement. Cognitive Psychology, 23(1), 45-93.
  • Chaves, R. P. (2020). What don't RNN language models learn about filler-gap dependencies? Proceedings of the Society for Computation in Linguistics, 3(1), 20-30.
  • Chaves, R. P., & Richter, S. N. (2021). Look at that! BERT can be easily distracted from paying attention to morphosyntax. Proceedings of the Society for Computation in Linguistics, 4(1), 28-38.
  • Chowdhury, S. A., & Zamparelli, R. 2018. RNN simulations of grammaticality judgments on long-distance dependencies. In Proceedings of the 27th International Conference on Computational Linguistics, 133-144.
  • Christiansen, M., & Chater, N. (1999). Connectionist natural language processing: The state of the art. Cognitive Science, 23, 417–37.
  • Chung, W., & Park, M.-K. (2018). Are Korean English learners structure-sensitive in reflexive resolution? The Asian International Journal of Life Sciences, 15(4), 2905-2919.
  • Da Costa, J., & Chaves, R. (2020). Assessing the ability of Transformer-based Neural Models to represent structurally unbounded dependencies. Proceedings of the Society for Computation in Linguistics, 3(1), 189-198.
  • Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
  • Dillon, B., Mishler, A., Sloggett, S., & Phillips, C. (2013). Contrasting intrusion profiles for agreement and anaphora: Experimental and modeling evidence. Journal of Memory and Language, 69(2), 85-103.
  • Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.
  • Fodor, J., & Pylyshyn, Z. (1988), Connectionism and cognitive architecture: A critical analysis. Cognition, 28, 3-71.
  • Frank, M. J., Gagne, C., Nyhus, E., Masters, S., Wiecki, T. V., Cavanagh, J. F., & Badre, D. (2015). fMRI and EEG predictors of dynamic decision parameters during human reinforcement learning. Journal of Neuroscience, 35(2), 485-494.
  • Frazier, M., Ackerman, L., Baumann, P., Potter, D., & Yoshida, M. (2015). Wh-filler-gap dependency formation guides reflexive antecedent search. Frontiers in Psychology, 6, 01504.
  • Futrell, R., Wilcox, E., Morita, T., & Levy, R. (2018). RNNs as psycholinguistic subjects: Syntactic state and grammatical dependency. arXiv preprint arXiv:1809.01329.
  • Goldberg, Y. (2017). Neural network methods for natural language processing. San Francisco, CA: Morgan & Claypool.
  • Goodkind, A., & Bicknell, K. (2018). Predictive power of word surprisal for reading times is a linear function of language model quality. In Proceedings of the 8th Workshop on Cognitive Modeling and Computational Linguistics (CMCL 2018), 10-18.
  • Gulordava, K., Bojanowski, P., Grave, E., Linzen, T., & Baroni, M. (2018). Colorless green recurrent networks dream hierarchically. arXiv preprint arXiv:1803.11138.
  • Hale, J. (2001). A probabilistic Earley parser as a psycholinguistic model. In Second Meeting of the North American Chapter of the Association for Computational Linguistics, 1-8.
  • Hao, Y., Mendelsohn, S., Sterneck, R., Martinez, R., & Frank, R. (2020). Probabilistic predictions of people perusing: Evaluating metrics of language model performance for psycholinguistic modeling. arXiv preprint arXiv:2009.03954.
  • Hu, J., Gauthier, J., Qian, P., Wilcox, E., & Levy, R. (2020). A systematic assessment of syntactic generalization in neural language models. arXiv preprint arXiv:2005.03692.
  • Jäger, L. A., Engelmann, F., & Vasishth, S. (2015). Retrieval interference in reflexive processing: Experimental evidence from Mandarin, and computational modeling. Frontiers in psychology, 6(617).
  • Jäger, L. A., Mertzen, D., Van Dyke, J. A., & Vasishth, S. (2020). Interference patterns in subject-verb agreement and reflexives revisited: A large-sample study. Journal of Memory and Language, 111(104063).
  • Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., & Wu. Y. (2016). Exploring the limits of language modeling. arXiv 1602.02410.
  • Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106(3), 1126-1177.
  • Lewis, R. L., & Vasishth, S. (2005). An activation‐based model of sentence processing as skilled memory retrieval. Cognitive Science, 29(3), 375-419.
  • Linzen, T., & Baroni, M. (2021). Syntactic structure from deep learning. Annual Review of Linguistics, 7, 195-212.
  • Linzen, T., Dupoux, E., & Goldberg, Y. (2016). Assessing the ability of LSTMs to learn syntax-sensitive dependencies. Transactions of the Association for Computational Linguistics, 4, 521-535.
  • Marvin, R., & Linzen, T. (2018). Targeted syntactic evaluation of language models. arXiv preprint arXiv:1808.09031.
  • Mitchell, T. M. (1980). The need for biases in learning generalizations. Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Rutgers University, New Brunswick, NJ
  • Nicol, J., & Swinney, D. (1989). The role of structure in coreference assignment during sentence comprehension. Journal of psycholinguistic research, 18(1), 5-19.
  • Peters, M., Neumann, E. M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv:1802.05365.
  • Phillips, C. (2006). The real-time status of island phenomena. Language, 82, 795–823.
  • Pinker, S., & Prince, A. (1988). On language and connectionism: Analysis of a parallel distributed processing model of language acquisition. Cognition, 28, 73 –193.
  • Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.
  • Ryu, S. H., & Lewis, R. L. (2021). Accounting for agreement phenomena in sentence comprehension with transformer language models: Effects of similarity-based interference on surprisal and attention. arXiv preprint arXiv:2104.12874.
  • Smith, N. J., & Levy, R. (2013). The effect of word predictability on reading time is logarithmic. Cognition, 128(3), 302-319.
  • Stowe, L. A. (1986). Parsing WH-constructions: Evidence for on-line gap location. Language and Cognitive Processes, 1(3), 227-245.
  • Sturt, P. (2003). A new look at the syntax-discourse interface: The use of binding principles in sentence processing. Journal of Psycholinguistic Research, 32(2), 125-139.
  • Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems, 27, 3104– 3112.
  • Traxler, M. J., & Pickering, M. J. (1996). Plausibility and the processing of unbounded dependencies: An eye-tracking study. Journal of Memory and Language, 35(3), 454-475.
  • Van Schijndel, M., & Linzen, T. (2018). A neural model of adaptation in reading. arXiv preprint arXiv:1808.09930.
  • Wilcox, E., Gauthier, J., Hu, J., Qian, P., & Levy, R. (2020). On the predictive power of neural language models for human real-time comprehension behavior. arXiv preprint arXiv:2006.01912.
  • Wilcox, E., Futrell, R., & Levy, R. (2021). Using computational models to test syntactic learnability. Proceedings of the Annual Meeting of the Cognitive Science Society, 43, 1-88.
  • Wilcox, E., Levy, R., Morita, T., & Futrell, R. (2018). What do RNN language models learn about filler-gap dependencies? arXiv preprint arXiv:1809.00042.
  • Xiang, M., Dillon, B., & Phillips, C. (2009). Illusory licensing effects across dependency types: ERP evidence. Brain and Language, 108(1), 40-55.