´ëÇѾð¾îÇÐȸ ÀüÀÚÀú³Î
-
Çѱ¹¾î ¸¶ÂûÀ½ /s/¿Í /s¡¯/ÀÇ À½¼º½ÇÇö¿¡ ´ëÇÑ ÃÊÁ¡°ú ¿îÀ² À§Ä¡ ¿µÇâ ¿¬±¸
-
ȸ±ÍºÐ¼®À» ÀÌ¿ëÇÑ Çѱ¹⋅Áß±¹⋅Á¶¼± Çѱ¹(Á¶¼±)¾î ½Å¹®±â»ç ºñ±³ ¿¬±¸: Çѱ¹(Á¶¼±)¾î ¹®ÀÚ¸¦ Áß½ÉÀ¸·Î
-
Universal 20 and Antisymmetry: The Nominal-Internal Order in Korean Sign Language
-
Result Cancellation in Vietnamese Causative Verbs: Experimental Evidence
33±Ç 2È£ (2025³â 6¿ù)
- Challenges in Deep Learning-Based Analysis of Korean Sign Language: Through the Lens of American Sign Language Research
-
Yong-hun Lee
Pages : 115-135
Abstract
Keywords
# American sign language # Korean sign language # recognition # production # translation
References
- Akandeh, A. (2022). Sentence-level sign language recognition framework. arXiv Preprint arXiv:2211.14447.
- Bilge, Y., Cinbis, R., & Ikizler-Cinbis, N. (2022). Towards zero-shot sign language recognition. arXiv Preprint arXiv:2201.05914.
- Camgoz, N., Koller, O., Hadfield, S., & Bowden, R. (2020). Sign language transformers: joint end-to-end sign language recognition and translation. arXiv Preprint arXiv:2003.13830.
- Cheng, K., Yang, Z., Chen, Q., & Tai, Y. (2020). Fully convolutional networks for continuous sign language recognition. arXiv Preprint arXiv:2007.12402.
- Fang, B., Co, J., & Zhang, M. (2018). DeepASL: Enabling ubiquitous and non-Intrusive word and sentence-level sign language translation. arXiv Preprint arXiv: 1802.07584.
- Fischer, S., & Gong, Q. (2010). Variation in East Asian sign language structures. In D. Brentari (Ed.), Sign languages (pp. 499-518). Cambridge: Cambridge University Press.
- Hu, H., Zhao, W., Zhou, W., Wang, Y., & Li. H. (2021). SignBERT: Pre-training of hand-model-aware representation for sign language recognition. arXiv Preprint arXiv:2110.05382.
- Jiang, Y. (2022). SDW-ASL: A dynamic system to generate large scale dataset for continuous American sign language. arXiv Preprint arXiv:2210.06791.
- Ko, S., Kim, C., Jung, H., & Cho, C. (2019). Neural sign language translation based on human keypoint estimation. arXiv Preprint arXiv:1811.11436.
- Lim, J., Sa, I., MacDonald, B., & Ahn, H. (2023). A sign language recognition system with pepper, lightweight-Transformer, and LLM. arXiv Preprint arXiv:2309.16898.
- Lucas, C., & Bayley, R. (2010). Variation in American sign language. In D. Brentari (Ed.), Sign languages (pp. 451-475). Cambridge: Cambridge University Press.
- Madhiarasan, M., & Roy, P. (2022). A comprehensive review of sign language recognition: Different types, modalities, and datasets. arXiv Preprint arXiv: 2204.03328.
- Moryossef, A., Jiang, Z., Muller, M., Ebling, S., & Goldberg. Y. (2023). Linguistically Motivated Sign Language Segmentation. arXiv Preprint arXiv:2310.13960.
- Rastgoo, R, Kiani, K., Escalera, S., & Sabokrou, M. (2021). Sign language production: A review. arXiv Preprint arXiv:2103.15910.
- Rastgoo, R., Kiani, K., & Escalera, S. (2024). A transformer model for boundary detection in continuous sign language. arXiv Preprint arXiv:2402.14720.
- Rastgoo, R., Kiani, K., Escalera, S., & Sabokrou, M. (2021). Multi-modal zero-shot sign language recognition. arXiv Preprint arXiv:2109.00796.
- Renz, K., Stache, N., Albanie, S., & Varol, G. (2021). Sign language segmentation with temporal convolutional networks. arXiv Preprint arXiv:2011.12986.
- Slimane, F., & Bouguessa, M. (2021). Context matters: Self-attention for sign language recognition. arXiv Preprint arXiv:2101.04632.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, ¨©., & Polosukhin I. (2017). Attention is all you need. arXiv Preprint arXiv: 1706.03762.
- Yin, A., Zhao, Z., Liu, J., Jin, W., Zhang, M., Zeng, X., & He, X. (2021). SimulSLT: End-to-End simultaneous sign language translation. arXiv Preprint arXiv: 2112.04228.